资源类型

期刊论文 425

会议视频 15

会议信息 1

年份

2024 1

2023 23

2022 34

2021 28

2020 22

2019 24

2018 25

2017 19

2016 19

2015 17

2014 14

2013 12

2012 33

2011 28

2010 50

2009 16

2008 17

2007 14

2006 7

2005 6

展开 ︾

关键词

天然气 11

能源 8

勘探开发 7

普光气田 7

页岩气 5

可持续发展 4

天然气水合物 4

温室气体 4

中国 3

采油工程 3

三相界面 2

中国近海 2

低碳 2

光声 2

关键技术 2

分布特征 2

南海 2

发展方向 2

发展趋势 2

展开 ︾

检索范围:

排序: 展示方式:

Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coalgas

Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 491-497 doi: 10.1007/s11705-010-0511-z

摘要: The sensitivity analysis of a polygeneration energy system fueled with duo fuel of coke oven gas and coal gas is performed in the study, and the focus is put on the relations among syngas composition, conversation rate and performance. The impacts of the system configuration together with the fuel composition on the performance are investigated and discussed from the point of cascading utilization of fuel chemical energy. First, the main parameters affecting the performance are derived along with the analysis of the system configuration and the syngas composition. After the performance is being simulated by means of the Aspen Plus process simulator of version 11.1, the variation of the performance due to the composition of syngas and the conversion rate of chemical subsystem is obtained and discussed. It is obtained from the result that the proper conversion rate of the chemical subsystem according to the specific syngas composition results in better performance. And the syngas composition affects the optimal conversion rate of the chemical subsystem, the optimal point of which is around the stoichiometric composition for methanol production (CO/H = 0.5). In all, the polygeneration system fueled with coke oven gas and coal gas, which can realize the reasonable conversion of syngas to power and chemical product according to the syngas composition, is a promising method for coal energy conversion and utilization.

关键词: duo fuel of coke oven gas and coal gas     polygeneration of power and methanol     sensitivity analysis     the relation among energy utilization     syngas composition and chemical conversion rate    

Refrigeration cycle for cryogenic separation of hydrogen from coke oven gas

CHANG Kun, LI Qiang

《能源前沿(英文)》 2008年 第2卷 第4期   页码 484-488 doi: 10.1007/s11708-008-0096-0

摘要: Ten billion cubic meters of hydrogen are dissipated to the environment along with the emission of coke-oven gas every year in China. A novel cryogenic separation of hydrogen from coke oven gas is proposed to separate the hydrogen and liquefy it simultaneously, and the cooling capacity is supplied by two refrigeration cycles. The performance of the ideal vapor refrigeration cycle is analyzed with methane and nitrogen as refrigerant respectively. The results show that the coefficient of performance (COP) of methane refrigeration cycle is 2.7 times that of nitrogen refrigeration cycle, and the figure of merit (FOM) of methane refrigeration cycle is 1.6 times that of nitrogen refrigeration cycle. The performance of ideal gas refrigeration cycle is also analyzed with neon, hydrogen and helium as refrigerant respectively. The results show that both the coefficient of performance and figure of merit of neon refrigeration cycle is the highest. It is thermodynamically possible to arrange the refrigeration cycle with methane and neon as refrigerant, respectively.

Catalytic performance of Co-Mo-Ce-K/γ-Al

Yuqiong ZHAO, Yongfa ZHANG

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 457-460 doi: 10.1007/s11705-010-0524-7

摘要: The catalytic performance of Co-Mo-Ce-K/γ-Al O catalyst for the shift reaction of CO in coke oven gas is investigated using X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The results indicate that Ce and K have a synergistic effect on promoting the catalytic activity, and the Co-Mo-Ce-K/γ-Al O catalyst with 3.0 wt-% CeO and 6.0 wt-% K O exhibits the highest activity. CeO favors Co dispersion and mainly produces an electronic effect. TPR characterization results indicate that the addition of CeO -K O in the Co-Mo-Ce-K/γ-Al O catalyst decreases the reduction temperature of active components, and part of octahedrally coordinated Mo transforms into tetrahedrally coordinated Mo , which has a close relationship with the catalytic activity.

关键词: coke oven gas     water gas shift reaction     sulfur-tolerant catalyst     cerium dioxide    

Process analysis of syngas production by non-catalytic POX of oven gas

Fuchen WANG , Xinwen ZHOU , Wenyuan GUO , Zhenghua DAI , Xin GONG , Haifeng LIU , Zunhong YU ,

《能源前沿(英文)》 2009年 第3卷 第1期   页码 117-122 doi: 10.1007/s11708-008-0078-2

摘要: A non-catalytic POX of oven gas is proposed to solve the problem of secondary pollution due to solid wastes produced from the great amount of organic sulfur contained in oven gas in the traditional catalytic partial oxidation (POX) process. A study of the measurement of flow field and a thermodynamic analysis of the process characteristics were conducted. Results show that there exist a jet-flow region, a recirculation-flow region, a tube-flow region, and three corresponding reaction zones in the non-catalytic POX reformer. The combustion of oven gas occurs mainly in the jet-flow region, while the reformation of oven gas occurs mainly in the other two regions. Soot would not be formed by CH cracking at above 1200°C. Since there are very little C hydrocarbons in oven gas, the soot produced would be very tiny, even if they underwent cracking reaction. The integrated model for entrained bed gasification process was applied to simulate a non-catalytic POX reformer. It indicated that the proper oxygen-to-oven gas ratio is 0.22–0.28 at different pressures in the oven gas reformation process.

关键词: oven gas     non-catalytic POX process     syngas    

Hydrotreating of light gas oil using a NiMo catalyst supported on activated carbon produced from fluidpetroleum coke

N. Rambabu,Sandeep Badoga,Kapil K. Soni,A.K. Dalai,J. Adjaye

《化学科学与工程前沿(英文)》 2014年 第8卷 第2期   页码 161-170 doi: 10.1007/s11705-014-1430-1

摘要: Nitric acid functionalized steam activated carbon (NAFSAC) was prepared from waste fluid petroleum coke (FPC) and used as a support material for the synthesis of a NiMo catalyst (2.5 wt-% Ni and 13 wt-% Mo). The catalyst was then used for the hydrotreatment of light gas oil. The support and catalysts were characterized by Brunauer-Emmett-Teller (BET) gas adsorption method, X-ray diffraction, H -temperature programmed reduction, NH -temperature programmed desorption, CO-chemisorption, mass spetrography, scanning electron microscopy (SEM), Boehm titration, and Fourier transform infrared spectroscopy (FTIR). The SEM results showed that the carbon material retained a needle like structure after functionalization with HNO . The Boehm titration, FTIR, and BET results confirmed that the HNO functionalized material had moderate acidity, surface functional groups, and mesoporosity respectively. The produced NAFSAC had an inert nature, exhibited the sink effect and few metal support interactions, and contained functional groups. All of which make it a suitable support material for the preparation of a NiMo hydrotreating catalyst. Hydrotreating activity studies of the NiMo/NAFSAC catalyst were carried out under industrial operating conditions in a laboratory trickle bed reactor using coker light gas oil as the feedstock. A parallel study was performed on the hydrotreating activity of NiMo/ -Al O as a reference catalyst. The hydrodesulfurization and hydrodenitrogenation activities of the NiMo/NAFSAC catalyst were 62% and 30%, respectively.

关键词: activated carbon     fluid petroleum coke     NiMo catalyst     hydrotreating     light gas oil    

Comparison of combustion characteristics of petroleum coke and coal in one-dimensional furnace

Qulan ZHOU, Qinxin ZHAO, Guangjie ZHOU, Huiqing WANG, Tongmo XU, Shien HUI,

《能源前沿(英文)》 2010年 第4卷 第3期   页码 436-442 doi: 10.1007/s11708-009-0059-0

摘要: The effect of primary air fraction , outer secondary air swirl strength and excess oxygen coefficient on the combustion characteristics of petroleum coke, Hejin lean coal and Shenmu soft coal are researched on a one-dimensional furnace using a dual channel swirl burner. The results show that with the increase in primary air fraction , the NO emission concentrations of both Hejin lean coal and petroleum coke increase, and the combustion worsens in the earlier stage, but the burn-out rate of Shenmu soft coal is improved. The NO emission concentration obtains a minimum value with an increase in . The ignition and burn-out rate of petroleum coke and Shenmu soft coal are optimal when Ω is minimum and Ω=0.87, respectively. However, both the NO emission concentration of petroleum coke and Shenmu soft coal are minimum when Ω=1.08. The increase in excess oxygen coefficient delays the ignition of petroleum coke, worsens the combustion condition and increases the NO emission concentration, but it greatly decreases the NO emission concentration of Shenmu soft coal.

关键词: petroleum coke     Shenmu soft coal     Hejin lean coal     combustion characteristics     experimental research    

Optimal slot dimension for skirt support structure of coke drums

Edward WANG, Zihui XIA

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 554-562 doi: 10.1007/s11465-018-0513-y

摘要:

The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducing the local stiffness close to the weld. The most common skirt slot design is thin relative to its circumferential spacing. A new slot design, which is significantly wider, is proposed. In this study, thermal-mechanical elastoplastic 3-D finite element models of coke drums are created to analyze the effect of different skirt designs on the stress/strain field near the shell-to-skirt junction weld, as well as any other critical stress locations in the overall skirt design. The results confirm that the inclusion of the conventional slot design effectively reduces stress in the junction weld. However, it has also been found that the critical stress location migrates from the shell-to-skirt junction weld to the slot ends. A method is used to estimate the fatigue life near the critical areas of each skirt slot design. It is found that wider skirt slots provide a significant improvement on fatigue life in the weld and slot area.

关键词: coke drum     stress analysis     cyclic stress     fatigue life     skirt slots    

Optimization of process parameters for preparation of powdered activated coke to achieve maximum SO

Binxuan ZHOU, Tao WANG, Tianming XU, Cheng LI, Yuan ZHAO, Jiapeng FU, Zhen ZHANG, Zhanlong SONG, Chunyuan MA

《能源前沿(英文)》 2021年 第15卷 第1期   页码 159-169 doi: 10.1007/s11708-020-0719-7

摘要: Powdered activated coke (PAC) is a good adsorbent of SO , but its adsorption capacity is affected by many factors in the preparation process. To prepare the PAC with a high SO adsorption capacity using JJ-coal under flue gas atmosphere, six parameters (oxygen-coal equivalent ratio, reaction temperature, reaction time, O concentration, CO concentration, and H O concentration) were screened and optimized using the response surface methodology (RSM). The results of factor screening experiment show that reaction temperature, O concentration, and H O (g) concentration are the significant factors. Then, a quadratic polynomial regression model between the significant factors and SO adsorption capacity was established using the central composite design (CCD). The model optimization results indicate that when reaction temperature is 904.74°C, O concentration is 4.67%, H O concentration is 27.98%, the PAC (PAC-OP) prepared had a higher SO adsorption capacity of 68.15 mg/g while its SO adsorption capacity from a validation experiment is 68.82 mg/g, and the error with the optimal value is 0.98%. Compared to two typical commercial activated cokes (ACs), PAC-OP has relatively more developed pore structures, and its and are 349 m /g and 0.1475 cm /g, significantly higher than the 186 m /g and 0.1041 cm /g of AC1, and the 132 m /g and 0.0768 cm /g of AC2. Besides, it also has abundant oxygen-containing functional groups, its surface O content being 12.09%, higher than the 10.42% of AC1 and 10.49% of AC2. Inevitably, the SO adsorption capacity of PAC-OP is also significantly higher than that of both AC1 and AC2, which is 68.82 mg/g versus 32.53 mg/g and 24.79 mg/g, respectively.

关键词: powdered activated coke (PAC)     SO2 adsorption capacity     parameters optimization     response surface methodology    

Formation of coke in thermal cracking of jet fuel under supercritical conditions

ZHU Yuhong, YU Caixiang, LI Zimu, MI Zhentao, ZHANG Xiangwen

《化学科学与工程前沿(英文)》 2008年 第2卷 第1期   页码 17-21 doi: 10.1007/s11705-008-0024-1

摘要: Continuous-flow reactor experiments were carried out to study coke formation from thermal cracking of home-made jet fuel RP-3 under supercritical conditions. The mechanism and precursor of coke forming were analyzed. The starting cracking temperature of RP-3 fuel was determined to be 471.8°C by differential scanning calorimetry (DSC). Temperature-programmed oxidation and scanning electron microscopy (SEM) characterizations of the stressed tubes showed that there are three different coke species including chemisorbed carbon, amorphous carbon and filamentous coke in the solid deposits. More than 90% of coke deposits are carried away by the supercritical fluid, which has strong capabilities of extraction for coke deposits and their precursors. There were 17.1 wt-% of iron and 11.1 wt-% of chromium found on the coke surface detected by energy dispersive spectroscopy (EDS) which suggests carburetion on alloy. RP-3 fuel and its cracking liquids were analyzed by GC-MS,which showed that the content of alkyl benzene and alkyl naphthalene increased evidently in cracking liquids.

关键词: dispersive spectroscopy     different     extraction     calorimetry     filamentous    

Effect of oil shale semi-coke on deposit mineralogy and morphology in the flue path of a CFB burning

Zhuo LIU, Jianbo LI, Mingming ZHU, Xiaofeng LU, Zhezi ZHANG, Dongke ZHANG

《能源前沿(英文)》 2021年 第15卷 第1期   页码 26-37 doi: 10.1007/s11708-020-0668-1

摘要: The effect of oil shale semi-coke (SC) on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed (CFB) which burns Zhundong lignite (ZD) was investigated. 10 wt% or 20 wt% SC was added to ZD, which were then combusted in the CFB furnace at 950°C. Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition. Both windward and leeward ash deposits on probes (P W, P L, P W and P L) were analyzed by using a scanning electron microscopy with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), an inductively coupled plasma optical emission spectrometry ICP-OES, and a particle size analyzer. When ZD was burned alone, the P W deposit was comprised of agglomerates (<30 m) enriched in CaSO and Na SiO , incurring significant sintering. The P L and P W deposits, however, were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes. The P L deposit was mainly fine ash particles where Na SiO and Na SO were absent. As SC was added, the agglomerates in both P W and P L decreased. Moreover, SiO and Ca/Na aluminosilicates dominated the mineral phases whereas Na SiO and Na SO disappeared, showing a decrease in deposit stickiness. Likewise, the P W deposit was found less spread on the probe, decreasing its deposition propensity. Na-bearing minerals turned into (Na, K)(Si Al)O and (Ca, Na)(Si, Al) O in the P W deposit. Moreover, Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented. The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.

关键词: ash deposition     circulating fluidized bed (CFB)     mineral transformation     oil shale semi-coke (SC)     Zhundong lignite (ZD)    

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 428-445 doi: 10.1007/s11708-023-0865-9

摘要: In this work, using fractured shale cores, isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO2 geological storage efficiency under real reservoir conditions. The adsorption process of shale to different gases was in agreement with the extended-Langmuir model, and the adsorption capacity of CO2 was the largest, followed by CH4, and that of N2 was the smallest of the three pure gases. In addition, when the CO2 concentration in the mixed gas exceeded 50%, the adsorption capacity of the mixed gas was greater than that of CH4, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO2 was longer than that of N2, and the CH4 recovery factor at the breakthrough time (RCH4) was also higher than that of N2. The RCH4 of CO2 gas injection was approximately 44.09%, while the RCH4 of N2 was only 31.63%. For CO2/N2 mixed gas injection, with the increase of CO2 concentration, the RCH4 increased, and the RCH4 for mixed gas CO2/N2 = 8:2 was close to that of pure CO2, about 40.24%. Moreover, the breakthrough time of N2 in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO2 was prolonged, which indicated that with the increase of N2 concentration in the mixed gas, the breakthrough time of CO2 could be extended. Furthermore, an abnormal surge of N2 concentration in the produced gas was observed after N2 breakthrough. In regards to CO2 storage efficiency (Sstorage-CO2), as the CO2 concentration increased, Sstorage-CO2 also increased. The Sstorage-CO2 of the pure CO2 gas injection was about 35.96%, while for mixed gas CO2/N2 = 8:2, Sstorage-CO2 was about 32.28%.

关键词: shale gas     gas injection     competitive adsorption     enhanced shale gas recovery     CO2 geological storage    

A novel methodology for forecasting gas supply reliability of natural gas pipeline systems

Feng CHEN, Changchun WU

《能源前沿(英文)》 2020年 第14卷 第2期   页码 213-223 doi: 10.1007/s11708-020-0672-5

摘要: In this paper, a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method, statistical analysis, mathematical-probabilistic analysis, and hydraulic simulation. The method proposed has two stages. In the first stage, typical scenarios are determined. In the second stage, hydraulic simulation is conducted to calculate the flow rate in each typical scenario. The result of the gas pipeline system calculated is the average gas supply reliability in each typical scenario. To verify the feasibility, the method proposed is applied for a real natural gas pipelines network system. The comparison of the results calculated and the actual gas supply reliability based on the filed data in the evaluation period suggests the assessment results of the method proposed agree well with the filed data. Besides, the effect of different components on gas supply reliability is investigated, and the most critical component is identified. For example, the 48th unit is the most critical component for the SH terminal station, while the 119th typical scenario results in the most severe consequence which causes the loss of 175.61×10 m gas when the 119th scenario happens. This paper provides a set of scientific and reasonable gas supply reliability indexes which can evaluate the gas supply reliability from two dimensions of quantity and time.

关键词: natural gas pipeline system     gas supply reliability     evaluation index     Monte Carlo method     hydraulic simulation    

Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst

Ignacio Jorge Castellanos-Beltran, Gnouyaro Palla Assima, Jean-Michel Lavoie

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 226-238 doi: 10.1007/s11705-018-1709-8

摘要: The methanol-to-olefin (MTO) reaction was investigated in a bench-scale, fixed-bed reactor using an extruded catalyst composed of a commercial SAPO-34 (65 weight percentage, wt-%) embedded in an amorphous SiO matrix (35 wt-%). The texture properties, acidity and crystal structure of the pure SAPO-34 and its extruded form (E-SAPO-34) were analyzed and results indicated that the extrusion step did not affect the properties of the catalyst. Subsequently, E-SAPO-34 was tested in a temperature range between 300 and 500 °C, using an aqueous methanol mixture (80 wt-% water content) fed at a weight hour space velocity (WHSV) of 1.21 h . At 300 °C, a low conversion was observed combined with catalyst deactivation, which was ascribed to oligomerization and condensation reactions. The coke analysis showed the presence of diamandoid hydrocarbons, which are known to be inactive molecules in the MTO process. At higher temperatures, a quasi-steady state was reached during a 6 h reaction where the optimal temperature was identified at 450 °C, which incidentally led to the lowest coke deposition combined with the highest H/C ratio. Above 450 °C, surges of ethylene and methane were associated to a combination of H-transfer and protolytic cracking reactions. Finally, the present work underscored the convenience of the extrusion technique for testing catalysts at simulated scale-up conditions.

关键词: MTO     SAPO-34     temperature     extrusion     coke     light alkanes    

Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steelmill off-gas in China by the LanzaTech process

Xunmin OU, Xu ZHANG, Qian ZHANG, Xiliang ZHANG

《能源前沿(英文)》 2013年 第7卷 第3期   页码 263-270 doi: 10.1007/s11708-013-0263-9

摘要: The LanzaTech process can convert carbon monoxide-containing gases produced by industries, such as steel manufacturing, into valuable fuel products. The life-cycle analysis (LCA) of energy use and greenhouse gas emissions from the LanzaTech process has been developed for a Chinese setting using the original Tsinghua China Automotive LCA model along with a customized module developed principally for the process. The LCA results demonstrate that LanzaTech gas-to-liquid (GTL) processing in China’s steel manufacturing is favorable in terms of life-cycle fossil energy and can reduce greenhouse gas emissions by approximately 50% compared with the conventional petroleum gasoline. The LanzaTech process, therefore, shows advantages in both energy-savings and a reduction in greenhouse gas emissions when compared with most bio-ethanol production pathways in China.

关键词: life-cycle analysis (LCA)     gas-to-liquid (GTL)     LanzaTech process    

Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gasfrom gas hydrate reservoir

Lin ZUO, Lixia SUN, Changfu YOU

《能源前沿(英文)》 2009年 第3卷 第2期   页码 152-159 doi: 10.1007/s11708-009-0017-x

摘要: Natural gas hydrates are promising potential alternative energy resources. Some studies on the multiphase flow and thermodynamics have been conducted to investigate the feasibility of gas production from hydrate dissociation. The methods for natural gas production are analyzed and several models describing the dissociation process are listed and compared. Two prevailing models, one for depressurization and the other for thermal stimulation, are discussed in detail. A comprehensive numerical method considering the multiphase flow and thermodynamics of gas production from various hydrate-bearing reservoirs is required to better understand the dissociation process of natural gas hydrate, which would be of great benefit to its future exploration and exploitation.

关键词: numerical simulation     natural gas hydrate     dissociation     thermodynamics     multiphase flow    

标题 作者 时间 类型 操作

Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coalgas

Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI

期刊论文

Refrigeration cycle for cryogenic separation of hydrogen from coke oven gas

CHANG Kun, LI Qiang

期刊论文

Catalytic performance of Co-Mo-Ce-K/γ-Al

Yuqiong ZHAO, Yongfa ZHANG

期刊论文

Process analysis of syngas production by non-catalytic POX of oven gas

Fuchen WANG , Xinwen ZHOU , Wenyuan GUO , Zhenghua DAI , Xin GONG , Haifeng LIU , Zunhong YU ,

期刊论文

Hydrotreating of light gas oil using a NiMo catalyst supported on activated carbon produced from fluidpetroleum coke

N. Rambabu,Sandeep Badoga,Kapil K. Soni,A.K. Dalai,J. Adjaye

期刊论文

Comparison of combustion characteristics of petroleum coke and coal in one-dimensional furnace

Qulan ZHOU, Qinxin ZHAO, Guangjie ZHOU, Huiqing WANG, Tongmo XU, Shien HUI,

期刊论文

Optimal slot dimension for skirt support structure of coke drums

Edward WANG, Zihui XIA

期刊论文

Optimization of process parameters for preparation of powdered activated coke to achieve maximum SO

Binxuan ZHOU, Tao WANG, Tianming XU, Cheng LI, Yuan ZHAO, Jiapeng FU, Zhen ZHANG, Zhanlong SONG, Chunyuan MA

期刊论文

Formation of coke in thermal cracking of jet fuel under supercritical conditions

ZHU Yuhong, YU Caixiang, LI Zimu, MI Zhentao, ZHANG Xiangwen

期刊论文

Effect of oil shale semi-coke on deposit mineralogy and morphology in the flue path of a CFB burning

Zhuo LIU, Jianbo LI, Mingming ZHU, Xiaofeng LU, Zhezi ZHANG, Dongke ZHANG

期刊论文

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

期刊论文

A novel methodology for forecasting gas supply reliability of natural gas pipeline systems

Feng CHEN, Changchun WU

期刊论文

Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst

Ignacio Jorge Castellanos-Beltran, Gnouyaro Palla Assima, Jean-Michel Lavoie

期刊论文

Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steelmill off-gas in China by the LanzaTech process

Xunmin OU, Xu ZHANG, Qian ZHANG, Xiliang ZHANG

期刊论文

Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gasfrom gas hydrate reservoir

Lin ZUO, Lixia SUN, Changfu YOU

期刊论文